
Abstract. A straightforward procedure is proposed for
expanding a molecular orbital determinantal wave
function into a set of determinantal wave functions
composed of atomic orbitals localized at the atoms of a
molecule. By employing this method, atomic orbital
determinants and their weights can be derived for a
molecule from the computed molecular-orbital wave
function. The procedure permits the interpretation of a
molecular orbital determinantal wave function in terms
of bonding schemes related to the classic resonance
structures used by organic chemists. By using the
unrestricted molecular orbital determinant, bonding
schemes and their weights are obtained for butadiene,
the butadiene radical cation and the acrylonitrile radical
anion. Their dominant bonding schemes are in accord
with the relevant resonance structures for these mole-
cules. For the butadiene radical cation and the acrylo-
nitrile anion they are shown to be compatible with the
accepted mechanisms of the electrochemical coupling
reactions of butadiene and acrylonitrile.
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1 Introduction

Many molecular properties such as geometries, ioniza-
tion potentials, dipole moments and the electronic
charge distribution can be computed from the ab initio
Hartree-Fock (HF) wave function [1]. This important
one-determinantal wave function is composed of canon-
ical molecular orbitals (MOs) delocalized over the whole
molecule. For computing other properties such as
electronic spectra or dissociation energies correlated
wave functions are needed [2]. They can be linear
combinations of determinantal wave functions com-
posed of MOs, which are perhaps the most important
theoretical tool of the organic chemist. Their shapes are
the basis of the successful frontier orbital concept
rationalizing a large body of chemistry [3]. Their
symmetry properties are applied in symmetry rules and
in correlation diagram methods. They led to compre-

hensive explanations of reaction mechanisms and the
stereospeci®city of chemical reactions [4].

The other classical theoretical concept is the manifold
of resonance structures for a molecule as conceived by
the organic chemist. They are an e�cient notation of the
accumulated knowledge about a molecule. By drawing
lines in a resonance structure, one localizes spin-coupled
electron pairs in bond regions or in lone pairs at the
atoms of the molecule. Such localizations are not an a
priori property of the HF wave function. In this func-
tion, spin-coupled electron pairs occupy MOs which are
delocalized over the whole molecule. The HF wave
function, however, is invariant with respect to a unitary
transformation of the occupied MOs [5]. This property is
applied for devising well-known unitary transformations
which produce localized MOs [6]. In many cases they are
localized in bond regions and in lone pairs, in a way
compatible with the predominant resonance structure
for a molecule [7].

A direct way of obtaining resonance structures for a
molecule is to apply the valence bond (VB) theory [8]. In
this classic approach, the exact wave function is a linear
combination of determinantal wave functions composed
of atomic orbitals (AOs) which are localized at the
atoms [8]. Any AO determinant corresponds to one or
several localization schemes of spin-coupled electron
pairs. The linear combination coe�cients in the expan-
sion are determined variationally [8]. Large coe�cients
indicate determinants of important resonance structures
characterizing the resonance hybrid for a molecule [9].
The merit of the VB approach is to provide a ®rm
quantum mechanical basis for the resonance structures
of organic chemistry [10]. In quantitative calculations
however, a large number of resonance structures must be
employed to expand the molecular wave function [11].
The construction of spin-adapted functions is a solvable
but formidable task [12]. Due to the non-orthogonality
of the AO determinantal wave functions [13], the
Hamilton matrix elements are di�cult to compute.
Therefore, MO methods have surpassed VB approaches
in the area of quantitative computations.

Nevertheless, VB approaches have experienced a re-
naissance in recent decades. Shaik and coworkers devel-
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oped a correlation diagram method based on qualitative
VB structures for reactants and products [14]. Their
curve-crossing model is a qualitative scheme to discuss
reaction mechanisms [14] and to estimate geometries of
transition states [15]. Harcourt applied the VB approach
to many topics in organic chemistry [16]. The diradical
character of 1,3-dipoles has been estimated [17] and an
application to the interesting problem of hypervalent
organic compounds appeared [18]. Epiotis developed a
qualitative approach which is a hybrid of theMO and VB
method [19]. This procedure led to a fairly comprehensive
rationalization of many areas of chemistry [19]. Malrieu
et al. developed the e�ective VB hamiltonian method for
conjugated hydrocarbons [20]. It is based on aHeisenberg
spin operator acting on a set of covalent resonance
structures for the p-electron systems [20]. This method is
an e�cient tool to describe ground and excited state
properties of conjugated hydrocarbons [20]. Recently,
Roth et al. carefully parametrized this p-electron proce-
dure [21]. Moreover, they supplemented the scheme with
a classical force ®eld for the r-electrons [21]. This hybrid
technique led to accurate stabilization energies for a large
number of p-radicals. Treboux et al. applied a geometry
dependent Heisenberg Hamiltonian supplemented by a
properly selected force ®eld for the r-electrons [22].
Properties of covalent excited states of rather large p-
electron systems could be computed with good accuracy
[22]. The Heisenberg Hamiltonian combined with a force
®eld for the r-electrons was used by Bernardi et al. to
simulate bond breaking in organic reactions [23]. A fairly
large number of parameters and high-level ab initio
computations were used to parametrize the matrix rep-
resentation of the Hamiltonian [23]. An application of
this procedure led to a comprehensive rationalization of
the photochemical transformations of ergosterol [24].
Several program packages are available for performing
quantitative VB computations [25]. An e�cient method is
the spin-coupled VB procedure developed by Gerratt and
his group [26]. The determinantal wave functions em-
ployed are composed of hybrid orbitals delocalized over
the molecule [27]. Their use leads to rather compact VB
expansions [26]. The spin-coupled VB method has been
applied to many molecules and high-quality wave func-
tions are obtained [28]. However, for medium-size or
large molecules the computations are very time consum-
ing. In contrast, rather large molecules can be treated by
means of the ab initio HF method [29] or by methods
which employ limited con®guration interaction. There-
fore, a scheme is desirable whereby resonance structures
and their weights can be obtained from HF wave func-
tions. Such a scheme implies that a relationship between
MO and VB wave functions exists.

The expansion of MO wave functions into a set of VB
functions was carried out for small molecules in the early
days of quantum chemistry [30]. The ®rst general scheme,
however, was devised by Hiberty and Leforestier [31]. A
one-determinantal wave function composed of delocal-
ized MOs is expanded into a linear combination of de-
terminantal wave functions made up of localized AOs
[31]. By using the concept of half-determinants [31], an
explicit formula for the expansion coe�cients was
obtained [32]. The procedure of Hiberty and Leforestier

involves several stages [31]. Firstly, theMOdeterminantal
wave function is obtained by means of the HF method.
Secondly, a linear independent set of relevant normalized
VB functions which are spin eigenfunctions is constructed
by means of Rumer's method [33]. Thirdly, the expansion
coe�cients and subsequently the weights of the VB
functions in the MO wave function are determined. This
expansion scheme has been applied to many chemical
problems as summarized in a comprehensive review [34].
Important resonance structures for 1,3-dipoles and also
their diradical character have been analysed [34]. The
push-pull substitution in benzene was discussed in terms
of calculated weights of resonance structures [34]. The
localization of p-electrons in ring-annelated systems
known as the Mills-Nixon e�ect could be rationalized
[34]. The expansion of MO wave functions into AO de-
terminants was also applied by Kara®loglou andMalrieu
in their analysis of electron correlation e�ects [35]. The
same formula for the expansion coe�cients as in the
procedure of Hiberty and Leforestier was applied [36].
This formula was discussed by Kara®loglou and Oha-
nessian in an interesting pedagogical paper [37]. It relates
the expansion method to an early paper by Mo�t [38].
The power of the expansion method is shown in the
analysis of hydride transfer processes [39]. It is interesting
to see how the weights of important resonance structures
vary along the reaction coordinate [39]. Environmental
e�ects on molecules were also studied by expanding the
MO wave functions into resonance structures [40]. Re-
cently, an alternative procedure based on the ®rst-order
density matrix was suggested for the expansion of anMO
wave function into VB functions [41].

The above-mentioned applications show that ex-
panding MO wave functions into resonance structures
leads to useful chemical insights. In the following sec-
tions we introduce a simple procedure for expanding a
determinantal wave function composed of MOs into
determinantal wave functions made up of AOs. The
procedure is in many ways related to the scheme of
Hiberty and Leforestier [31]. Our method, however, uses
a compact formula for obtaining the entire set of AO
determinants contained in an MO wave function. We
illustrate the procedure by ®nding important localized
bonding schemes for the p-electron systems of but-
adiene, the butadiene radical cation and the acrylonitrile
radical anion. The obtained bonding schemes accord
with resonance structures which are considered as being
relevant for describing the properties of these molecules.

2 Theoretical considerations

2.1 Expanding the MO wave function

Consider a closed- or open-shell doublet one-determi-
nantal wave function. A wave function which is more
general than the restricted one is the unrestricted
Hartree-Fock (UHF) wave function [42]. This simple
one-determinantal wave function does not describe a
pure-spin state [43]. However, it provides di�erent space
parts for the a- and b-spin orbitals [42]. This ¯exibility
permits electrons of di�erent spin to become localized in
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di�erent spatial regions of the molecule. This property
makes the UHF wave function more appropriate for our
purposes than the restricted Hartree-Fock (RHF) deter-
minant. In an open-shell doublet system, m� 1 a- and m

b-spin orbitals are occupied by a- and b-electrons,
respectively. The odd number of electrons is given by
n � 2m� 1. In a singlet state, the number of a and b-
spin orbitals is equal. However, their space parts may be
di�erent. Using the linear combination of atomic
orbitals (LCAO) approximation, we expand the a- and
b-spin orbitals into sets of N atomic spin orbitals vl and
vl, respectively. For a doublet state, we write

Wi�j� �
XN
l�1

alivl�j� i � 1; 2 . . .m� 1 ; �1a�

Ui�j� �
XN
l�1

blivl�j� i � 1; 2 . . .m : �1b�

By convention, electron j has a spin in wi and vl. The b
spin functions in /i and vl are represented by a bar. The

coe�cients ali and bli in Eq. (1a, b) designate the LCAO
coe�cients for the MOs wi and /i, respectively. The one-
determinantal UHF wave function comprises moleuclar
spin orbitals delocalized over the molecule. Our aim is to
interpret this wave function in terms of localized
bonding schemes where electrons are localized in bond
regions and in lone pairs at the atoms of a molecule.
Thus, the wave function for a localized bonding scheme
should be composed of atomic spin orbitals localized at
the atoms. In the following we expand a delocalized MO
determinantal wave function into a sequence of deter-

minantal wave functions composed of localized spin
orbitals. We start out by representing the one-determi-
nantal UHF MO wave function in a particular way
shown below where

The left-hand side of Eq. (2) represents the UHF MO
wave function composed of delocalized molecular spin
orbitals. It is a determinant of a square matrix of
dimension n where n is the number of electrons. This
square matrix is represented on the right-hand side of
Eq. (2) as a product of two rectangular matrices. The
®rst matrix contains the LCAO coe�cients of all
occupied MOs and zero entries. It comprises n rows
and 2N columns where N is the number of AOs in the
molecule. The second matrix comprises atomic-spin
orbitals grouped according to a- and b-spin. It is made
up of 2N rows and n columns. The forms of the
rectangular matrices ensure that their multiplication
produces the quadratic matrix on the left-hand side of
Eq. (2). The doublet UHF wave function is also
obtained by forming the determinant on the right-hand
side of Eq. (2). This is represented by the short-hand
notation

WUHF � Det C�n� 2N� v�2N� n�j j : �3�
The matrices C�n� 2N� and v�2N� n� symbolize the
®rst and the second matrix on the right-hand side of
Eq. (2), respectively.

In Eq. (2), the UHF wave function is represented as a
determinant of the product of two rectangular matrices.
This form permits us to employ the general multiplica-
tion rule for determinants known as the Binet-Cauchy
theorem [44]. Baba et al. [45] used this theorem to

WUHF � Det

W1�1� W1�2� . . . W1�n�

/1�1� /1�2� . . . /1�n�

..

. ..
. ..

. ..
.

Wm�1� Wm�2� . . . Wm�n�

/m�1� /m�2� . . . /m�n�

Wm�1�1� Wm�1�2� . . . Wm�1�n�

���������������

���������������
n� n

� Det

a11 a21 . . . aN1 � � . . . �
� � . . . � b11 b21 . . . bN1

..

. ..
. ..

. ..
. ..

.

a1m a2m . . . aNm � � . . . �
� � . . . � b1m b2m . . . bNm

a1m�1 a2m�1 . . . aNm�1 � � . . . �

v�1�1 v�2�1 . . . v�n�1
v�1�2 v�2�2 . . . v�n�2

..

. ..
. ..

. ..
.

vN�1� vN�2� . . . vN�n�

v1�1� v1�2� . . . v1�n�

v2�1� v2�2� . . . v2�n�

..

. ..
. ..

. ..
.

vN�1� vN�2� . . . vN�n�

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

����������������������

����������������������

: �2�

n� 2N 2N� n
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interpret con®guration interaction (CI) calculations in
terms of reference functions. Hohlneicher and BoÈ rsch-
Pulm [46] developed a procedure for interpreting a CI
calculation for a molecule in terms of Platt's perimeter
model [47]. The perimeter electronic states serve as
reference functions [46]. The Binet-Cauchy theorem is
applied to expand the electronic states into the set of
perimeter electronic states [46]. Balint-Kurti and Kar-
plus [48] expressed Hamilton matrix elements over non-
orthogonal Slater determinants in terms of orthogonal
Slater determinants. This key transformation, used in a
VB calculation, resembles an application of the Binet-
Cauchy theorem [48]. To the best of our knowledge,
however, this theorem was not explicitly applied to
interpret determinantal MO wave functions in terms of
atomic spin orbital determinants. Using the Binet-
Cauchy theorem [44], we can write

Thus, the UHF wave function is expanded into a sum.
Any sum member is a product of two determinants
formed from n� n matrices (see Eq. 4). The ®rst
determinant contains a selection of LCAO coe�cients
as obtained from a standard UHF calculation. The
second determinant represents a one-determinantal wave
function composed of localized atomic spin orbitals. The
summation is performed over groups of indices. Any
group represents n indices k1; k2; . . . kn, where n is the
number of electrons. Any ki can assume a value between
1 and 2N, where N is the number of AOs in the
molecule. The n indices k1; k2; . . .kn, however, are
ordered in magnitude as indicated below the summation
sign (see Eq. 4). Any index group designates a de®nite
column selection of the rectangular coe�cient matrix
and a row selection of the rectangular atomic spin
orbital matrix of Eq. (2). These selections determine the
coe�cient and atomic spin orbital determinants of
Eq. (4). Equation (4) is a straightforward device for
expanding a one-determinantal UHF MO wave function
into a linear combination of AO determinantal wave
functions. The linear combination coe�cients are the
coe�cient determinants in Eq. (4). They contain LCAO
coe�cients which transform AOs into MOs. However,
an in®nite number of LCAO coe�cient sets exists all
related by unitary transformations. The transformations

leading from canonical to localized MOs are well known
[6]. Those unitary transformations leave the MO deter-
minant invariant [5], but the coe�cient determinants
in Eq. (4) are also invariant (see Appendix). Thus,
expanding the MO determinant into a sequence of AO
determinants by means of Eq. (4) is unique. This
expansion has been the basis for the electron correlation
analysis performed by Kara®loglou and Malrieu [35]
and of the expansion technique developed by Hiberty
and Leforestier [31]. Their coe�cient formula [31, 36] for
a de®nite AO determinant is a coe�cient determinant of
Eq. (4). They obtained it, however, in a di�erent way by
employing the concept of half determinants [31]. Hiberty
and Leforestier expand the MO wave function into VB
functions [31]. In a ®rst step, a linear independent set of
VB functions which are spin eigenfunctions is construct-
ed [31]. Subsequently, the linear combination coe�cients

for these spin eigenfunctions are calculated and their
weights in the expansion are determined [31]. The
advantage of Eq. (4) is that it represents a systematic
way to obtain the entire set of AO determinants. Their
spin multiplicity agrees with that of the expanded
MO wave function. Thus, from a doublet UHF wave
function, only doublet AO determinants are generated.
For all improper spin multiplicities, the coe�cient
determinants of Eq. (4) vanish [49]. However, neither
the UHF MO determinant nor the obtained AO
determinants are in general spin eigenfunctions. More-
over, the AO determinants are not exactly normalized to
unity. Nevertheless, they correspond to localized bond-
ing schemes of correct spin multiplicity. Therefore, the
Binet-Cauchy theorem leads to a compact tool for
analysing a delocalized MO wave function in terms of
strictly local bonding schemes.

We can apply the well-known conditions for a
vanishing of determinants to the coe�cient determi-
nants in Eq. (4). This leads to the number ND of AO
determinants which are contained in the MO determi-
nant. ND is given by

ND � N
na

� �
N
nb

� �
� N!

na!�Nÿ na�!
� �

N!

nb!�Nÿ nb�!
� �

:

�5�

WUHF � Det

W1�1� W1�2� . . . W1�n�

/1�1� /1�2� . . . /1�n�

..

. ..
. ..

. ..
.

/m�1� /m�2� . . . /m�n�

Wm�1�1� Wm�1�2� . . . Wm�1�n�

�������������

�������������
�

X
1Ok1<k2...<knO2N

Det

c1k1 c1k2 . . . c1kn

..

. ..
. ..

. ..
.

cnk1 cnk2 . . . cnkn

��������
�������� �Det

vk1�1� vk1�2� . . . vk1�n�

vk2�1� vk2�2� . . . vk2�n�

..

. ..
. ..

. ..
.

vkn�1� vkn�n� . . . vkn�n�

�����������

�����������
:

�4�
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Here, na and nb are the number of a- and b-electrons,
respectively. This formula for ND was previously
obtained and applied for partitioning the electron
correlation energy in molecules [50]. ND is represented
in Table 1 for the p-electron systems of various mole-
cules. Thus, 4 AO determinants evolve from a one-
determinantal MO wave function containing the two p-
electrons of ethylene. From the p-electron system of
butadiene 36 AO determinants are obtained. Table 1
illustrates the well±known fact that ND is rather large
even for medium size p-electron systems like benzene and
naphthalene [51]. This sheer number of AO determinants
makes the complete expansion of MO determinants a
formidable problem. Often, however, the electrons in a
molecule can be partitioned into groups of chemically
active and inactive electrons. They may refer to a
characteristic functional group and the remaining part
of a molecule, respectively. A technique has been devised
where only the components of the MO wave function for
the chemically active electrons are expanded into local-
ized AO determinants [52]. The components for the
inactive electrons, however, remain delocalized [52].

2.2 The weights of AO determinants in the expansion

In the previous section we introduced a simple scheme
for expanding an MO-determinantal wave function into
a sequence of AO determinantal wave functions. Any
AO determinant localizes electrons in a speci®c way into
bond regions or at the atoms of the molecule. These
localizations lead to bonding schemes which are the
basis of the resonance structures used by organic
chemists. Our aim is to obtain localized bonding
schemes which characterize a molecule. Therefore, we
must derive weights for the AO determinants contained
in the MO wave function. We can write the expansion in
Eq. (4) symbolically as

Wmo �
XND

i

ci Wao
i : �6�

Here, Wmo may be the UHF wave function composed of
canonical MOs and the Wao

i are the AO determinants
evolving from Wmo. The number ND of AO determinants
with non-vanishing coe�cients in Eq. (6) is given by
Eq. (5). Wave function Wmo is normalized and the
probability of ®nding all electrons in space is unity.
Using Eq. (6), we can write

hWmojWmoi � 1 �
XND

i

XND

j

ci cjhWao
i jWao

j i

�
XND

i

c2i hWao
i jWao

i i
ÿ �

XND

j 6�i
ci cjhWao

i jWao
j i
�
: �7�

The AO determinants form a set of non-orthogonal
many-electron functions [53]. Hence, overlap integrals
between AO determinants appear in Eq. (7). The unit
probability can be partitioned into contributions wi

given by

wi � c2i hWao
i jWao

i i �
XND

j 6�i
ci cjhWao

i jWao
j i : �8�

Their meaning becomes evident from the following
reasoning. Let us remove from the expansion in Eq. (6)
one Wao

i . This changes the unit probability of ®nding all
electrons in space by wi. Thus, wi is the weight of the AO
determinant Wao

i in the probability of ®nding all
electrons in space. This weight de®nition (Eq. 8) has
been employed extensively in the past [54]. Its applica-
tion requires the computation of overlap integrals
between non-orthogonal AO determinants. The non-
orthogonality also implies that the squares of all
coe�cients in Eq. (6) do not add up to unity. In our
applications we have used Eq. (6), but only an
approximate weight de®nition was employed. Using
the expansion in Eq. (6), we can write for the normal-
ization condition

hWmojWmoi � 1

�
XND

i

XND

j

ci cjdijhWaojWaoi : �9�

Table 1. The number of atomic spin orbital determinants (ND)

which are contained in a molecular orbital (MO) determinantal

wave function. Only the p-electrons are considered. ND is

calculated by means of Eq. (5)

Molecule N na nb ND

2 1 1 4

3 2 1 9

4 2 1 24

4 2 2 36

4 3 2 24

6 3 3 400

10 5 5 63504
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Thus, instead of considering all di�erent overlap inte-
grals as in Eq. (7), we use an average normalization
integral. Equation (9) implies that it should be equal to

hWaojWaoi � 1XND

k

c2k

: �10�

Consequently, the weight wi of an AO determinant Wao
i

in the expansion (Eq. 6) is given by

wi � c2iXND

k

c2k

: �11�

This simple weight formula has been suggested [55] and
applied [56] in the past.

Moreover, it is easy to see that a signi®cant weight wi

is also compatible with a large energy increment Ei of the
molecular electronic energy. The electronic UHF energy
is the expectation value of a UHF MO determinant over
the electronic Hamiltonian H. Using the expansion in
Eq. (6), we can write

EUHF �
XND

i

XND

j

ci cjhWao
i jHjWao

j i �
XND

i

Ei : �12�

Hamilton matrix elements over non-orthogonal AO
determinants appear in Eq. (12) and an energy incre-
ment Ei is given by

Ei � c2i hWao
i jHjWao

i i � ci
XND

j 6�i
cjhWao

i jHjWao
j i : �13�

Thus, a large expansion coe�cient ci leads to a large
weight, but also to a signi®cant contribution of the
diagonal and the o�-diagonal matrix elements in Ei.
Therefore, the meaning of a weight wi is twofold. Firstly,
wi indicates how strongly Wao

i contributes to the unit
probability of ®nding the electrons in space. Secondly, a
large wi shows also that Wao

i is likely to contribute
signi®cantly to the electronic energy of a molecule.

3 Applications

3.1 Computational procedures employed

All MO calculations were performed by means of the
Open VMS version of the Gaussian 92 suite of ab initio
programs [57] implemented on an AlphaDec-Station.
We are mainly interested in semiquantitative results.
Therefore, the standard STO-3G minimal basis sets [58]
were employed primarily. Doublet, but also singlet
ground state molecules were treated by means of the
UHF method [42]. To obtain a UHF wave function for a
singlet ground state molecule, it is mandatory to start
the self-consistent ®eld (SCF) iterations with orbitals
breaking the spatial symmetry of the closed-shell MOs.
We employed the ``mix'' option implemented in the
guess link of the Gaussian 92 [57]. This option linearly
combines the restricted guess frontier orbitals into
symmetry broken HOMO+LUMO and HOMO)

LUMO linear combinations. They serve as a and b
guess HOMOs, respectively, in the UHF iteration
process [57].

3.2 The p-bonds of ethylene and formaldehyde

In Sect. 2 we devised a simple procedure for obtaining
localized bonding schemes for a molecule from a one-
determinantal MO wave function composed of delocal-
ized MOs. Here, we apply the expansion technique to the
simple p-bond systems of ethylene and formaldehyde.
We are interested in how the procedure describes purely
covalent and polar p-bonds respectively.

We performed an RHF calculation for the ethylene
molecule by means of the STO-3G minimal basis sets
[58] at the experimental geometry [59]. We are only in-
terested in the p-bond. Therefore, an MO determinant
for the two p-electrons was expanded. Hence, the LCAO
coe�cients in Eqs. (2±4) are the coe�cients for the p-MO
of ethylene. According to Eq. (5), the expansion
in Eq. (4) produces four singlet AO determinants (see
Table 1) and any AO determinant is a wave function for
a localized bonding scheme. Thus, two covalent and two
ionic schemes evolve from the expansion. They are
symbolized in the ®rst row of Table 2. Their weights
were computed by means of Eq. (8) and Eq. (11) where
the Eq. (8) considers explicitly the non-orthogonality of
the AO determinants. The two sets of weights are id-
entical for ethylene and they are recorded in the second
column of Table 2. The structural formula of ethylene,
as written by the organic chemist, corresponds to the
two covalent bonding schemes of Table 2. They appear
with a total weight of 0.5. Due to the non-polarity of the
bond, the two ionic forms evolve with equal weights.
Their values of 0.25, however, are far too large. This is a
well-known artefact of the RHF one-determinantal MO
wave function [60]. It permits electrons of opposite spin
to become too close to the atoms. Therefore, the ionic
bonding schemes appear with weights that are too large.
When correlated wave functions are expanded, a de-
crease and an increase of the ionic and covalent weights,
respectively [61], is found. An analysis of these correla-
tion e�ects led to transferable scaling factors. These
convert RHF weights into almost exact weights [62].
Expansions of exact p-MO wave functions into AO de-
terminants has been investigated by Lepetit et al. [63].
The p-MO wave functions were eigenfunctions of the
Hubbard or of the Parise-Parr-Pople Hamiltonian [63].
The expansions led to a set of exact coe�cients ~CI which
measure the contribution of AO determinant I to the
exact p-MO wave function. The authors showed that an
exponential relationship holds between the coe�cients
for the exact wave function and the coe�cients obtained
from expanding the simple RHF MO determinant [63].
This led to a simple recipe for converting RHF coe�-
cients ~CI into almost exact coe�cients CI [64]. Only the
energies for the AO determinants and one variational
parameter are needed [64]. The corrected wave function
gave energies which comprised a large part of the
correlation energy [64]. The procedure was further
enhanced by introducing variational parameters for
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individual atom pairs [65]. The improvement of an RHF
MO wave function is in essence a diminishing of the
coe�cients for AO determinants which describe ionic
charge separations in a molecule. It was shown that this
lowering depends on a combination of properties for
individual bonds [65]. This led to a procedure without
variational parameters where only bond properties and
the geometry of the molecule are needed [65]. The local
character of the electron correlation problem is also
exploited in the electron correlation treatment based on
the local approach [66].

Large ionic weights may also be avoided by applying
the UHF wave function. This simple one-determinantal
wave function provides di�erent molecular orbitals for
a- and b-electrons [42]. Thus, a- and b-electrons can
localize in di�erent parts of the molecule. Therefore,
ionic bonding schemes with spin-coupled electron pairs
at the atoms, may evolve from the UHF wave function
with small weights. The greater ¯exibility of the UHF
wave function as compared to the RHF wave function
may lead to the result that EUHF is lower than ERHF even
for singlet ground states. Such a lowering was ®rst found
for the RHF wave function of a one-dimensional elec-
tron gas model [67]. There is always a spin-density wave
solution with lower energy than the RHF energy [67].
UHF solutions with lower energy than the RHF
solution are well known for singlet ground states of
linear polyenes [68] and for conjugated molecules [69].
This lower energy can lead to UHF molecular orbitals
not symmetry adapted to the full molecular point group.
This de®ciency is known as the symmetry dilemma [70].
The prospect that EUHF is lower than ERHF initiated the
development of instability conditions for the RHF
wave function [71]. Their importance for understanding
organic reaction mechanisms has been comprehensively
outlined [72].

We performed an UHF calculation for the singlet
ground state of ethylene at the experimental geometry [59]
and by using the STO-3G basis set [58]. EUHF was lower
than ERHF by the small amount of 3.02 kcal/mol. The
obtainedUHFMOs are not symmetry-adapted in theD2h

point group. In general, an UHF wave function is not
eigenfunction to the total spin operator S2. A singlet UHF
wave function is primarily contaminated by a triplet
component [73]. For pure singlet and triplet wave func-
tions the S2 expectation values should be 0.0 and 2.0,

respectively. We computed for the ethylene UHF wave
function a value of 0.3058.Hence, theUHFwave function
is a reasonable approximation for a singlet wave function.
This is also supported by the UHF and RHF Mulliken
charges which are almost identical. We also computed
singlet UHF wave functions by means of the more ex-
tensive basis sets 4-31G [74] and 6-311G�� [75]. The nu-
merical values for EUHF and ERHF are very close when
these basis sets are used. Moreover, the RHF and the
UHF wave functions are almost identical and the latter is
onlyweakly symmetry-broken. In general, the existence of
a UHF solution with lower energy than the RHF solution
depends on the interatomic distances in a molecular sys-
tem [76]. Such UHF solutions seem to be less frequent
when large basis sets are employed [77].

We computed the STO-3G UHF weights for the lo-
calized bonding schemes of ethylene by means if Eqs. (8)
and (11). Both sets of weights are recorded in Table 2.
When Eq. (11) is used, the second covalent scheme
evolves with the large weight of 0.6898. Thus, the
bonding scheme written by the organic chemist is de-
rived with a weight of about 70 % . Weights for the two
ionic and the remaining covalent scheme are signi®cantly
smaller, namely 0.1407 and 0.0287, respectively (see
Table 2). The weights obtained by means of Eq. (8) lead
to the same qualitative results (see Table 2). Thus, the
UHF wave function favours the covalent but disfavours
the ionic bonding schemes (see Table 2). This ®nding is
in line with the spin localization capabilities of the UHF
procedure. There, two electrons of the same spin enjoy a
binding exchange interaction [78]. It brings electrons of
same spin close together at the atoms. Electrons of op-
posite spin, however, experience only a coulomb repul-
sion [78]. Therefore, spin-coupled electron pairs prefer
di�erent atoms (covalent) but avoid a localization at one
atom (ionic).

An RHF wave function for formaldehyde was ob-
tained by using the experimental geometry [79] and the
minimal STO-3G basis set [58]. Again, bonding schemes
and their weights were computed by means of Eqs. (8)
and (11). Both sets of weights are almost identical and
they are recorded in the fourth row in Table 2. As for
ethylene, covalent and ionic bonding schemes evolve
with similar weights. The ionic weights describe correctly
the polarity of the carbonyl group but their values are
too large.

Table 2. Covalent and ionic

weights for the p-bonds of
ethylene and formaldehyde.

They are computed by means of

Eq. (11). The weights in par-

entheses are obtained from

Eq. (8) which accounts for the

non-orthogonality of AO

determinants. A UHF-MO

determinant leads to weights

which emphasize characteristi-

cally one covalent AO determi-

nant. This arises from the spin

polarization inherent in the

UHF method

Molecule

RHF 0.2500
(0.2500)

0.2500
(0.2500)

0.2500
(0.2500)

0.2500
(0.2500)

UHF 0.0287
(0.0482)

0.6898
(0.6090)

0.1407
(0.1714)

0.1407
(0.1714)

RHF 0.2473
(0.2482)

0.2473
(0.2482)

0.2011
(0.2092)

0.3043
(0.2944)

UHF 0.6559
(0.5871)

0.0349
(0.0535)

0.1224
(0.1496)

0.1868
(0.2098)
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We derived a UHF wave function for the singlet
ground state of formaldehyde at the experimental ge-
ometry [79] and by using the STO-3G basis set [58]. EUHF

was lower than ERHF by only 2.88 kcal/mol. The ex-
pectation value over S2 is 0.2781, indicating only a small
triplet contamination of the singlet ground state wave
function. Again, RHF and UHF Mulliken charges are
almost identical. Both ®ndings support the notion that
the UHF wave function is su�cient for describing the
singlet ground state of formaldehyde. We also attempted
to obtain singlet ground state UHF wave functions by
means of the 4-31G [74] and the 6-311G�� [75] basis sets.
For the 4-31G basis set we derived a UHF energy which
was lower than the RHF energy by a very small amount.
However, all UHF computations converged to the RHF
solution when the 6-311G�� basis set was employed.
Weights obtained from the STO-3G singlet UHF wave
function for formaldehyde were computed by means of
Eqs. (8) and (11). Both sets of values are recorded in the
last row of Table 2. The weights from Eq. (11) indicate
that one covalent bonding scheme appears with a weight
of about 66 % . The two ionic bonding schemes evolve
with signi®cantly smaller weights. Their relative magni-
tude is in line with the polarity of the carbonyl group.
Weights obtained from Eq. (8) show also the dominance
of one covalent bonding scheme and the correct polarity
of the bond (see Table 2). Thus, our expansion classi®es
the carbonyl p-bond as a covalent p-bond which is
slightly polarized. This ®nding is in line with the wealth
of chemical experience. Our results support the notion
that the UHF wave function is more appropriate than
the RHF wave function for obtaining bonding schemes
and their weights.

3.3 The p-electron system of butadiene

3.3.1 Preferred local spin occupations

Butadiene is characterized by two weakly interacting p-
bonds. Encouraged by the results for the single p-bonds
of ethylene and formaldehyde, we applied the expansion
technique to the more complicated case of butadiene.
We computed the UHF wave function for the singlet
ground state of butadiene at the experimental geometry
[80] and by using the STO-3G basis set [58]. The energy
EUHF was lower than ERHF by 11.52 kcal/mol. The S2

expectation value for the UHF wave function was
0.7432. This result indicates signi®cant triplet and higher
spin contaminations for the singlet ground state. How-
ever, the computed UHF and RHF Mulliken charges
[81] are almost identical. For the terminal carbon atoms
net charges of ÿ0:125 (UHF) and ÿ0:130 (RHF) are
obtained. Charges of ÿ0:058 (UHF) and ÿ0:058 (RHF)
occur at the central carbon atoms. Thus, in spite of spin
contaminations, the UHF MO determinant seems to
be appropriate for spin independent properties of the
singlet ground state. The symmetry-broken character of
the UHF wave function persisted when the larger basis
sets, 4-31G [74] and 6-311G�� [75], were applied.

We are interested in bonding schemes for the p-elec-
tron system and we expanded a UHF MO determinant
for the four p-electrons. Thus, only LCAO-coe�cients

of the occupied a and b p-MOs occur in Eqs. (2) and (4).
In accord with Eq. (5), 36 AO determinants (see Table 1)
evolve from the UHF MO determinant with non-van-
ishing coe�cients. We obtained all AO determinants in
the sequence of decreasing weights. Numbers in the ®rst
column of Table 3 designate the position of the AO
determinant in this sequence. In the second column,
occupations of localized spin AOs are displayed. They
are indicated by the diagonal of the corresponding AO
determinant. Their weights are computed by means of
Eq. (11) and are recorded in the fourth row. The purely
covalent determinant 1 with complete spin alternation
evolves with a weight of 0.5220. It is followed by the
monoionic determinants 2 to 5. They describe electron
occupations where one carbon atom carries a positive
and another one a negative charge (see Table 3). The

Table 3. Localized bonding schemes and their weights as they

evolve from the UHF MO determinant for the singlet ground state

of butadiene. Entries in the ®rst column indicate the position of the

scheme in a weight-ordered sequence of all schemes. The weight for

AO determinant 1 is partitioned into the weights for two bonding

schemes (see Sect. 3.3.2). AO determinants 1±5 emerge with a

weight of about 85%. Notice the large weight for the covalent

scheme of about 50%. Schemes below the double line supplement

the schemes above the line. Bonding schemes above and below the

double line are interrelated by spin inversion

No. Occupation Bonding scheme Weight

1 0.52197

2
0.08129

3 0.08129

4 0.08036

5 0.08036

11 0.01251

12
0.01251

27 0.00038

18 0.00219

19 0.00219

20 0.00216

21 0.00216
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®rst ®ve determinants evolve from the expansion with a
total weight of about 85 % . Determinants below the
double line have an equivalent meaning to the determi-
nants above the line. They emerge, however, with
signi®cantly smaller weights (see Table 3).

The weights in Table 3 illustrate a characteristic fea-
ture of the UHF method. A binding exchange interac-
tion between electrons of the same spin occurs which is
absent for electrons of di�erent spin [78]. The coulomb
repulsion, however, operates also for electrons of dif-
ferent spin [78]. This spin polarization permits electrons
of the same spin to become localized at the atoms and it
disfavours spin-coupled electron pairs at the atoms.
Therefore, ionic bonding schemes evolve from the UHF
MO determinant with smaller weights than from an
RHF MO determinant. In butadiene, a-electrons are
localized at the atoms C1 and C3. The b-electrons are
concentrated at C2 and C4. Hence, determinant 1 ap-
pears with a large weight, but the equivalent determinant
27 arises with a very small weight (see Table 3).

3.3.2 Spin occupations and bonding schemes

The UHF MO determinant for the p-electrons of
butadiene contains the leading AO determinant 1 with
a large weight of 0.5220 (see Table 3). It describes a
covalent occupation of all four p-AOs with electrons.
Their spin quantum numbers alternate along the carbon
chain. Our aim is to obtain localized bonding schemes
for the p-electron system of butadiene. A line in a
bonding scheme or in an organic resonance structure
symbolizes a bond formed by two electrons of di�erent
spin quantum numbers. Simple spin pairing shows that
AO determinant 1 contributes at least to two bonding
schemes. The ®rst is the formula of butadiene with two
terminal double bonds. The second describes a singlet
1,4-biradical with a central double bond. Therefore, the
weight of AO determinant 1 should be partitioned into
contributions for the two bonding schemes. Such a
partitioning is not necessary in the expansion technique
of Hiberty and Leforestier [31]. In this procedure the
MO-determinant is expanded into the set of VB-
functions [31]. They are linear combinations of AO
determinants formed in such a way that the resulting VB
function is eigenfunction to the total spin operator S2

[82]. This property ensures that any VB function
describes a de®nite spin-pairing scheme [83]. Thus, to
determine weights for di�erent resonance structures
means obtaining weights for VB functions which are a
priori di�erent.

We expanded into the set of simple AO determinants
and their weights in a MO determinant are also related
to bond properties of a molecule. Maynau et al. [84]
showed that a linear relationship exists between the
length of a bond A·B in a polyene and the probability
of ®nding a singlet-spin arrangement between the atoms
A and B. This probability depends linearly on the
probability of ®nding a spin alternation between A and
B in the set of AO determinants [85]. This probability is
the sum of squares of those coe�cients in Eq. (6) which
refer to covalent AO determinants with a spin alterna-
tion between A and B. Thus, the weight for AO deter-

minant 1 is determined by the number of bonds and by
their properties in the above two bonding schemes.
Therefore, the weight should be partitioned in a way
re¯ecting the number and the bond strengths of the
p-bonds in the two bonding schemes. The ®rst scheme
comprises the two terminal p-bonds of butadiene. The
second scheme is for the 1,4-biradical with two weakly
interacting radical centres and a central p-bond. There-
fore, its weight should be dominated by the strength of
the central p-bond. The local character of the AO de-
terminant implies that all bonds contribute separately to
the weight. These notions suggest the ®rst condition for
a weight partitioning, namely 2p� p0 � 0:5220. Here, p
and p0 are weight contributions for a terminal and the
central p-bond, respectively. The terminal p-bond is
much stronger than the central p-bond. This is indicated
by their di�erent bond lengths [80], but also by their
rotational barriers which are 56.1 kcal/mol [86] and
6.9 kcal/mol [87], respectively. We suggest that a weight
partitioning should be in line with the ratio of these
barriers. This leads to the second condition, p=p0 � 8:1,
for the weight partitioning. By combining the two con-
ditions, we separated the weight for AO determinant 1
into a weight for the butadiene formula and a weight for
the 1,4-biradical scheme. Their values are given in the
third column of Table 3. The same type of partitioning
can be done for the weight of the AO determinant 27.
However, this weight is very small (see Table 3). We
attributed it solely to the bonding scheme with two
terminal p-bonds.

3.3.3 A characteristic set of localized bonding schemes

Table 3 leads to a representation of butadiene in terms
of localized bonding schemes as shown in Fig. 1. We
obtained them by adding the weights of equivalent
bonding schemes of Table 3. The schemes of Fig. 1
evolve from the UHF MO determinant with a total
weight of about 85 %. The leading covalent bonding
scheme should be supplemented by four ionic bonding
schemes (see Fig. 1). The obtained set of bonding
schemes accords with the resonance structures conceived

Fig. 1. Localized bonding schemes and their weights for a proper
description of the p-electron system of butadiene. The bonding
schemes are obtained from the singlet ground state UHF determinant
with a total weight of about 85 % . They accord with the resonance
structure description [88] used by organic chemists
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as important for butadiene [88]. The expansion also
produces AO determinants where electrons of a spin-
coupled electron pair are localized at non-adjacent
carbon atoms. They describe the 1,4- and 1,3-biradical
character of the singlet ground state of butadiene. In
Table 4, we have displayed the relevant bonding schemes
and their computed weights. Above the double line
bonding schemes with larger weights are recorded.
Below the line equivalent schemes with signi®cantly
smaller weights are given (see Table 4). Both groups are
related by spin inversion. We have added up all weights
for equivalent bonding schemes of Table 4. For the 1,4
biradical, we also considered the weight in Table 3. This
leads to a description of the 1,4- and 1,3-biradical

character as given in Fig. 2. All schemes for the 1,4- and
the 1,3-biradical character appear with total weights of
about 8.0 % and 1.5 % , respectively. Thus, in accord
with chemical experience, the diradical character of the
singlet ground state of butadiene is only small. The 1,4-
diradical character is slightly more pronounced than the
1,3-diradical character. Localization procedures, based
on unitary transformations of the occupied MOs, can
also lead to bonding schemes compatible with the
structural formula [7]. The diradical character of a
closed-shell singlet ground state, however, is obscured
by these localization techniques. In the expansion
technique, however, it emerges naturally from the local
properties of the AO determinants.

3.3.4 The p-electron delocalization in butadiene

Above, we showed that the UHF p-electron MO
determinant of butadiene contains the covalent and the
four ionic bonding schemes with a total weight of 85 %
(see Fig. 1). In Table 5 we have represented four double
ionic bonding schemes. They can be formed by shifting
the electron pairs of the terminal p-bonds onto the

Table 4. Localized bonding schemes for the 1,4- and 1,3-diradical

character of butadiene. Schemes and their weights are obtained

from the UHF MO determinant for the singlet ground state.

Numbers in the ®rst column designate the position of the scheme in

a weight-ordered sequence of all schemes. Schemes above the double

line emerge with larger weights than the schemes bolow the double

line. Both groups of bonding schemes are related by spin inversion

No. Occupation Bonding scheme Weight

6 0.02386

7 0.02386

22 0.00109

14 0.00372

15 0.00372

16 0.00367

17 0.00367

34 0.00003

35 0.00003

36 0.18 á 10)5

28 0.00015

29 0.00015

30 0.00015

31 0.00015

Table 5. Four purely ionic bonding schemes compatible with the

two localized terminal p-bonds of butadiene. They evolve from the

UHF MO determinant with a total weight of about 5.3%

No. Occupation Bonding scheme Weight

8 0.01404

9 0.01404

10 0.01266

13 0.01237

Fig. 2. Localized bonding schemes representing the 1,4- and 1,3-
diradical character of butadiene. They are derived from the UHFMO
determinant for the singlet ground state. Only a weak diradical
character is indicated. The 1,4-diradical schemes appear with a weight
of about 8.0 % whereas the 1,3-diradical schemes occur with 1.5 % .
Thus, the 1,4-diradical character of butadiene should be slightly more
pronounced
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carbon atoms of the bonds. The bonding schemes evolve
from the UHF MO determinant with a total weight of
about 5 percent (see Table 5). The schemes of Fig. 1
and Table 5 are compatible with two non-interacting
terminal p-bonds. They are contained in the UHF
MO determinant with a total weight of about 90 %. An
energy increment for a bonding scheme should be
proportional to its weight. Consequently, 90 % of the
total p-electron energy of butadiene originates from a
localization of the p-electrons into the two terminal p-
bonds. By lifting the localization, the p-electrons become
delocalized over the whole set of AOs. The resulting
energy gain has been de®ned as the delocalization energy
[89]. Thus, about 10 % of the p-electron energy should
be delocalization energy. Our analysis is restricted to the
p-electrons. Hence, a comparison with the delocalization
energy obtained by the Hueckel method is legitimate.
This classic method leads to a total energy of 4.472 b
for butadiene. If the energy of two isolated ethylene
molecules [89] is subtracted, we obtain the value of
0.472 b for the delocalization energy [89]. This energy
represents 10.6 % of the total energy of butadiene which
is close to our value of 10 %. This ®nding supports the
notion that the obtained bonding schemes and their
weights are reasonable for a description of butadiene.

The ®rst and comprehensive analysis of delocalized p-
systems in terms of localized MOs has been performed
by England and Ruedenberg [90]. The delocalization
energy of a conjugated closed-shell p-electron molecule
was de®ned as the di�erence between two quantities [91].
The ®rst quantity is the sum over all energies of the
occupied p-MOs of the molecule multiplied by 2 [91].
The second quantity is the p-MO energy of an isolated
ethylene multiplied by the number of p-electrons of the
molecule [91]. The sum over all energies of the occupied
MOs, however, is invariant under unitary transforma-
tions leading to localized MOs [5, 6]. Thus, canonical or
localized orbitals can be used for a computation of the
delocalization energy [90]. The delocalization energy
stabilizes a p-electron system and it should be negative.
The delocalization energy is negative provided all ener-
gies of the occupied p-orbitals of the molecule are lower
than the p-orbital energy of ethylene. England and
Ruedenberg showed that this condition holds for the
energies of the localized MOs [92]. In general, this con-
dition is not valid for the delocalized HF-MOs [93].
Thus, localized MOs served to elucidate the stabilizing
character of the delocalization. Their form also provides
a rationalization for the origin of the resonance energy
[90]. Localized MOs can be formed by requiring that the
electrons occupying these orbitals maximize their self-
repulsion energy [94]. This leads to MOs for delocalized
p-electron systems which are maximally localized.
However, in spite of this property, they are still more
delocalized than in ethylene. Thus, the stabilizing delo-
calization occurs because the maximally localized p-or-
bitals of a conjugated p-system are still more delocalized
than the p-orbital of the reference molecule ethylene [95].
This notion is illustrated by the forms of the localized
occupied p-MOs of butadiene. One doubly occupied
p-MO is represented in Fig. 3 [96]. It consists of two
p-lobes having a positive and negative sign, respectively.

The positive lobe is mainly localized in the region of one
terminal p-bond (see Fig. 3). However, small functional
values appear also in the bond region of the central
carbon bond (see Fig. 3). Thus, the two p-electrons of
the terminal p-bond have also a tendency to become
localized in the central bond region. This tendency in-
duces the p-electron delocalization in butadiene. All
bonding schemes of Fig. 1 locate p-electrons into the
bond regions of the two terminal p-bonds. The large
overall weight (85 % ) shows that this type of localiza-
tion dominates. The diradical bonding schemes of Fig. 2
cannot be attributed to the two terminal p-bonds. They
describe the delocalization of the p-electron system. The
upper three bonding schemes of Fig. 2 have the largest
weights. They locate two p-electrons into the central
bond region (see Fig. 2). Thus, the p-electrons of but-
adiene prefer the terminal p-bonds (Fig. 1) and their
delocalization (Fig. 2) proceeds predominantly via the
central carbon bond. These conclusions are indicated by
the weights of the localized AO determinants but also by
the form of the positive p-lobe of the localized MO (see
Fig. 3). Therefore, the form of the localized p-MOs and
the applied expansion technique explain similarly the
p-electron delocalization in butadiene.

3.3.5 Comparison with other expansion work

In Sect. 3.3.1 we obtained for the p-electron system of
butadiene a set of AO determinants and their weights
from the UHF MO determinant. Hiberty and Ohaness-
ian investigated butadiene by expanding the RHF MO
determinant for the p-electrons into a linear independent
set of VB functions [97]. These functions are normalized
linear combinations of AO determinants and they are
spin eigenfunctions. Thus, the expansion set di�ers from
our set of simple AO determinants. Moreover, these
authors applied a weight formula where the overlap
between the non-orthogonal AO determinants is explic-
itly considered [97]. Our applied weight formula
(Eq. 11), however, neglects the non-orthogonality (see
Sect. 2.2). Hiberty and Ohanessian improved their
RHF weights for VB functions by considering electron
correlation [62]. This increased and decreased the
covalent and ionic RHF weights, respectively [62].

Fig. 3. Form of one localized occupied p- orbital of trans-butadiene.
The orbital was obtained by means of the minimal STO-3G basis set.
A space contour line of 0.025 is shown. The lobe, characterizing a
terminal p-bond, is also partially localized in the central carbon bond
region. This lobe extension illustrates the tendency of the p-electrons
of a terminal p-bond to become delocalized
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In the fourth column of Table 6, VB function weights
for butadiene are recorded. They were obtained from a
p-electron wave function computed by complete p-space
CI [98]. In the third column our derived weights are
given. We obtained them by superimposing bonding
schemes of Tables 3 and 4 which resemble the VB
functions of Table III in [62]. Thus, the covalent VB
function is simulated by superimposing all bonding
schemes which describe two terminal covalent bonds.
These are the schemes 1, 11, 12 and 27 recorded in the
®rst column of Table 6. To obtain the overall weight we
added up all weights of the component bonding schemes.
We performed this procedure for all nine resonance
structures given in Table III of [62]. Table 6 shows that
the UHF and the full CI weights almost coincide for the
leading covalent bonding scheme and the important
monoionic schemes of Fig. 1. This is also valid for the
resonance structures with smaller weights. A deviation
is found for the 1,4-diradical structures. The full p
CI weights favour the purely covalent structure. Our
weights, however, prefer the monoionic bonding
schemes (see Table 6). Nevertheless, the overall agree-
ment exempli®ed in Table 6 supports the notion that
expanding an UHF MO determinant into simple AO
determinants is a tool to derive bonding schemes and
their weights which are chemically meaningful.

3.3.6 The expansion using an extended basis set

Above, we have expanded the UHFMO determinant for
the p-electron system of butadiene into a set of AO
determinants. They are composed of p-AOs represented
by the minimal STO-3G basis set [58]. However, Eq. (2)
and the expansion in Eq. (4) hold also for extended basis

sets. In those instances, the v in Eqs. (2) and (4) refer to
groups of Gaussians. They are determined by the
contraction scheme of the primitive Gaussian basis set.
In this section we expand again a symmetry-broken
UHF MO determinant for the p-electrons of
butadiene, but we use the extended 4-31G basis set
[74]. Thus, any p-AO consists of two functions v which
refer to the inner and outer part of the p-AO. They are
represented by three and one primitive Gaussian [74],
respectively. The expansion produced 784 AO determi-
nants with non-vanishing expansion coe�cients. We
obtained them in a weight-ordered sequence. A selection
of important AO determinants and their weights is
recorded in Table 7. The ®rst 16 covalent AO determi-
nants describe a complete spin alternation. The AO
determinant 1 locates the four p-electrons exclusively
into the inner parts (i) of the p-AOs. It occurs with the
largest weight of all covalent AO determinants. In
contrast AO determinant 16 attributes all p-electrons to
the outer parts (o). It appears with the smallest weight of
all covalent AO determinants. The AO determinants 7
and 8 evolve with intermediate weights. They describe a
partial occupation of inner and outer parts of the p-AOs.
Thus, the p-electrons have a tendency to occupy the
inner parts of the p-AOs. The same principle governs
also the weights of the monoionic AO determinants 17±
80. Covalent and monoionic AO determinants evolve
from the expansion with a total weight of 44 % and
36 %, respectively. These ®ndings accord qualitatively
with the minimal basis set weights given in Table 3.
Using the extended basis set, we also obtained AO
determinants which attribute all four p-electrons to
only one carbon atom. The weights for those AO
determinants, however, are almost zero. A vanishing of
weights for unrealistic electron occupations was found
previously in a similar analysis [99]. In this work the
4-31G basis was used to expand the MO determinant
for 1,3-dipoles into a set of VB structures [99].

Anotherwayof using extendedbasis sets for expanding
MO determinants would be the employment of speci®c
minimal valence sets. They are constructed to simulate
molecular properties computed with the extended basis
sets. One option is the employment of orthogonal polar-
ized AOs [100]. They span a vector space containing the
occupied MOs obtained with the extended basis set [100].
Moreover, they are designed to resemble the AOs of the
free atoms [100]. Another choice is the use of orthogonal
natural AOs [101]. They are formed by requiring that their
occupation numbers nearly sum up to the total number of
electrons [101]. Another minimal valence set are the
modi®edAOs [102] which are orthogonal at the atoms but
which are non-orthogonal when located at di�erent atoms
[102]. They are obtained by requiring that the di�erence
between the sum of their occupation numbers and the
number of electrons is minimized [102].

3.4 Localized bonding schemes
for the p-electron system of the butadiene radical cation

In the butadiene radical cation three p-electrons are
distributed over four p-AOs. The manifold of bonding
schemes represents various localization patterns of the

Table 6. Comparison of the UHF weights and the full con®gura-

tion interaction (CI) weights [98] for the binding schemes of

butadiene. The UHF weights are obtained from UHF p-MO

determinant computed for the singlet ground state. Numbers in the

®rst column indicate equivalent bonding schemes whose weights

were added to obtain the total weight. The inherent spin

polarization of the UHF wave function leads to large weights for

the covalent bonding scheme. The UHF weights re¯ect correctly

the sequence of the exact full CI weights

No. Bonding scheme UHF Full CI

1, 11, 12, 27 0.5170 0.508

2, 3, 18, 19 0.1670 0.166

4, 5, 20, 21 0.1650 0.159

1, 22, 36 0.0315 0.058

6, 7, 34, 35 0.0478 0.032

8, 9 0.0280 0.031

10 0.0127 0.010

13 0.0124 0.009

24, 26 0.0032 0.006
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unpaired electron, the positive charge and the remaining
two p-electrons. In the following we expand the UHF p-
electron MO determinantal wave function into the set of
AO determinants. Our aim is to obtain localized bonding
schemes which describe the butadiene radical cation.

We optimized the geometry of the butadiene radical
cation at the UHF/STO-3G level. Bond lengths of
1.4049 A and 1.4100 A were calculated for the terminal
and the central carbon bonds, respectively. Thus, the
pronounced bond-length alternation of butadiene is di-
minished in the butadiene radical cation. The S2 expec-

tation value for the UHF wave function was 0.9750.
Hence, the wave function describes a doublet state
(0.7500) weakly contaminated by a higher quartet
component. We employed a UHF MO determinant for
the three p-electrons to obtain the AO determinants.
Thus, the coe�cients in Eq. (4) are p-MO LCAO coef-
®cients obtained by the UHF method.

The expansion produced 24 AO determinants with
non-vanishing coe�cients (see Table 1). The most im-
portant AO determinants and their weights are re-
corded in Table 8. Numbers in the ®rst column
designate their position in the weight-ordered sequence
of AO determinants. The second column displays the
spin occupation as indicated by the diagonal of the
corresponding AO determinant. Weights for the AO
determinants are computed by means of Eq. (11) and
they are given in the last column. In column three spin
occupations are converted into bonding schemes. The
AO determinants 3 and 6 give rise to two bonding
schemes with di�erent spin pairings. One pairing leads
to a bonding scheme with a terminal, the other to a

Table 7. A selection of covalent and monoionic AO determinants

and their weights for butadiene. They were obtained by means of the

extended 4-31G basis set and the symmetry-broken UHF wave

function was expanded. The expansion produced 16 covalent AO

determinants. The largest weight is found for AO determinant 1

where all inner parts (i) of the p-AOs are occupied. The smallest
weight is derived for the AO determinant 16 where only outer p-
orbital parts are (o) occupied. A partial occupation of inner and

outer parts leads to intermediate weights as for AO determinants 7

and 8. The same principles govern also the weights of all 64

monoionic AO determinants. Covalent and monoionic AO deter-

minants appear with a total weight of 44% and 36%, respectively

No. Weight

1 0.03353

7 0.02733

8 0.02733

16
0.02186

17
0.00800

18
0.00800

79 0.00345

80 0.00345

Table 8. Relevant bonding schemes for the butadiene radical cation

and their computed weights. The UHF p-MO determinant for the

doublet ground state were expanded. Numbers in the ®rst column

indicate the position of the AO determinant in a weight-ordered-

sequence. AO determinants 1±6 evolve with a total weight of about

83%. They are supplemented by the AO determinants below the

double line. AO determinants above and below the double line are

interrelated by spin inversion

No. Occupation Bonding scheme Weight

1 0.21880

2
0.21877

3 0.09805

4 0.09804

5 0.09803

6 0.09802

12 0.00825

13 0.00825

16 0.00666

17 0.00666
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scheme with a central p-bond (see Table 8). Their
weights were obtained by a partitioning of the weights of
the corresponding AO determinants 3 and 6. In analogy
to butadiene (Sect. 3.3.2), the partitioning was guided by
the bond strength of the terminal and the central p-
bonds. The UHF method and the STO-3G basis set
produced almost equal rotational barriers of about 50
kcal/mol for the terminal and the central carbon bonds.
This ®nding suggests that half of the weights of AO
determinants 3 and 6 should be attributed to any of the
corresponding bonding schemes (see Table 8). The
bonding schemes above the double line in Table 8 evolve
from the expansion with a total weight of about 83% .
The leading schemes 1 and 2 locate the unpaired spin at
one terminal carbon atom. The other terminal carbon is
involved in a covalent p-bond (see Table 8). Below the
double line schemes are recorded with rather small
weights. They are related to the schemes above the line
by spin inversion. For example, scheme 17 is derived
from scheme 1 by inverting the spins in the covalent p-
bond (see Table 8). In scheme 1, complete spin alterna-
tion between a- and b-spins exists. In scheme 17, how-
ever, a-spins are at C1 and C3 (see Table 8) and complete
spin alternation is absent. Due to the concept of maxi-
mal spin alternation [103], an electron system with
complete spin pairing should be energetically more fa-
vourable than a system with only partial pairing [103].
This concept led to a comprehensive rationalization of
magnetic and structural properties of conjugated
hydrocarbons [103]. The weights for the AO determi-
nants 1 and 17 (see Table 8) illustrate the operation of
this concept. It is further exempli®ed by the AO de-
terminant pairs 2±16 and by the AO determinant pairs
3±13 and 6±12 (see Table 8).

Bonding schemes relevant for a description of the
butadiene radical cation are depicted in Fig. 4. Their
weights are derived from Table 8 by adding the weights
of equivalent schemes above and below the double line.
The butadiene radical cation should be described by
eight bonding schemes (see Fig. 4). They evolve from the
UHF MO determinant with a total weight of about
86%. The leading schemes locate the unpaired electron
at a terminal carbon atom. The positive charge prefers

the adjacent or the other terminal carbon atom. Thus,
stabilization of the positive charge is accomplished as in
the allyl cation.

3.4.1 Localized bonding schemes
and the electrochemical coupling reaction of butadiene

In the previous section we obtained for the p-electron
system of the butadiene radical cation a set of localized
bonding schemes and their weights. Here, we test the
relevance of our theoretical results by relating the
dominant bonding schemes to the reactivity of the
butadiene radical cation. SchaÈ fer and Steckhan [104]
performed electrochemical experiments with butadiene.
A graphite anode was used to electrolyse a water±
methanol mixture in the presence of butadiene [104].
The positively charged anode oxidized butadiene and the
butadiene radical cation was produced in the vicinity of
the anode [104]. The high radical cation concentration
led to its dimerization, a prototype reaction known
as anodic coupling [105]. The coupling yielded three
isomeric dimethoxy octadienes in a current yield of
about 15% [104]. The observed octadienes (a), (b) and
(c) are represented in Fig. 5. The dotted lines symbolize
newly formed r carbon bonds (see Fig. 5). The observed
products are consistent with the relevant bonding
schemes represented in Fig. 4. New bonds are formed
between the terminal carbon atoms carrying the un-
paired electrons. The 2 and 6 positions of the octadiene
double bonds are in accord with the schemes of Fig. 4.
In addition to carbon bond formation, nucleophilic
substitutions by two methoxy groups occur. The posi-
tions of attack agree with the preferred localization of the

Fig. 4. Relevant bonding schemes of the butadiene radical cation and
the computed weights. All bonding schemes make up a weight of
about 86% . The UHF p-MO determinant for the doublet ground
state was expanded. The unpaired electron prefers the terminal carbon
atoms. The positive charge is delocalized in an allyl cation fashion

Fig. 5. The electrochemical reactions of the butadiene radical cation.
Only the octadienes (a), (b) and (c) are observed. Bond formations and
nucleophilic substitutions by the CH3O group correspond to the
localized bonding schemes of Fig. 4
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positive charges in the bonding schemes of Fig. 4. Also
of interest are the heptadienes (d), (e) and the hexadiene
(f) (see Fig. 5) unobserved in the experiment. Their
formation would imply that a bonding scheme has a
large weight where the unpaired spin is localized at an
inner carbon atom. Such schemes, however, appear in
Fig. 4 only with small weights. Consequently, products
(d), (e) and (f) are unfavourbale also by theory. Thus,
the electrochemical dimerization of the butadiene radical
cation is satisfactorily rationalized by the dominant
bonding schemes represented in Fig. 4.

3.5 Localized bonding schemes for the p-electron system
of the acrylonitrile radical anion

The large electron a�nity of acrylonitrile is attributed to
the p-electron withdrawing property of the nitrile group.
This molecule easily accepts an electron and the radical
anion is formed. This species is a key precursor in
chemical reactions leading to large-scale formation of
products important for the ®bre industry. In this doublet
open-shell molecule, ®ve p-electrons are distributed over
four p-AOs. In the following, localized bonding schemes
and their weights are obtained for the acrylonitrile
radical anion.

We optimized the geometry of the acrylonitrile radi-
cal anion at UHF/3-21G level of theory. For the
H2C¸CHCN carbon double bond length, a value of
1.4276 AÊ was obtained which is rather long for a double
bond. For the single carbon bond H2CHC·CN the
small bond distance of 1.3785 AÊ was derived. The
carbon nitrogen triple bond length of the nitrile group
turned out to be 1.1671 AÊ . Thus, the double (single)
bond in the acrylonitrile radical anion has a signi®cant
single (double) bond character. To obtain localized
bonding schemes, we employed a doublet UHF MO
determinantal wave function for the ®ve p electrons
situated in ®ve p-MOs. This wave function was calcu-
lated at the optimized geometry, but the minimal STO-
3G basis set [58] was used. This minimal basis UHF
wave function led to an S2 expectation value of 0.8323.
Hence, the doublet state (0.7500) is only slightly con-
taminated by the quartet spin component.

In accord with Eq. (5), 24 AO determinants evolve
from Eq. (4) (see Table 1). The most prominent AO
determinants and their weights are recorded in Table 9.
Again, entries in the ®rst column number the position of
the AO determinants in a weight-ordered sequence.
Their weights are recorded in the last column. The sec-
ond and third columns show the local spin occupations
and the resulting bonding schemes, respectively. Any of
the AO determinants 3 and 5 give rise to two bonding
schemes. They di�er by their location of the p-bonds.
Their weights should be derived by a weight partitioning
for the corresponding AO determinant. However, we
considered only the bonding schemes with a strong
p-bond as indicated by their computed bond distances.
Thus, the weight of AO determinant 3 is solely attrib-
uted to the bonding scheme with a p bond in the CN
group (see Table 9). The weight for AO determinant 5
contributes only to the weight for the bonding scheme
with the CH2CH·CN carbon p-bond (see Table 9).

Bonding schemes above and below the double line are
interrelated by spin inversion (see Table 9). We see,
bonding schemes 1±7 evolve from the expansion with a
total weight of about 78 % . Schemes 1 and 2 alone
contribute about 40 % (see Table 9). Based on Table 9,
we recorded in Fig. 6 three bonding schemes which
evolve from the UHF MO determinant with a total
weight of about 57 percent. The bonding schemes in
Fig. 6 lead to several conclusions. In the acrylonitrile
radical anion the unpaired electron prefers the terminal

Table 9. Localized bonding schemes and their weights for the

acrylonitril radical anion. They are obtained from the UHF p-MO

determinant for the ®ve p-electrons. The scheme numbers are the
position of the scheme in a weight-ordered sequence of all schemes.

Bonding schemes 1±7 evolve from the determinant with a total

weight of about 78%. The schemes above and below the double line

are related by spin inversion

No. Occupation Bonding scheme Weight

1 0.21997

2 0.196460

3 0.08595

4 0.07754

5 0.06925

6 0.06461

7 0.06341

8 0.05663

13 0.01862

19 0.00176

9 0.03132

Fig. 6. Relevant bonding schemes for a description of the acrylonitrile
radical anion. They are contained in the UHF p-MO determinant
with a total weight of about 57 % . Spin density is mainly localized at
the terminal carbon atom. The negative charge prefers the adjacent
carbon atom. A small charge delocalizing power of the nitrile group is
indicated by the rightmost scheme and its small weight
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carbon atom. The negative charge favours the carbon
atom adjacent to the nitrile group. Thus, the nitril group
stabilizes the negative charge only to a minor extent by
p-electron delocalization. Signi®cant delocalization
would imply that the ®rst and the third bonding scheme
of Fig.6 appear with similar weights. The lack of delo-
calization is indicated by their di�erent weights (see
Fig. 6). The bonding schemes of Fig. 6 also provide a
rationalization for the bond lengths. The terminal C·C
bond is, in all three schemes, a single bond (see Fig. 6).
Therefore, the H2C¸CHCN carbon double bond has a
signi®cant single-bond character. In contrast, the
H2CHC·CN single bond should possess a weak dou-
ble-bond character (see Fig. 6). Thus, the leading
bonding schemes are in accord with the computed bond
lengths (see above). In the following section we show
that they are also compatible with the chemical prop-
erties of the acrylonitrile radical anion.

3.5.1 Localized bonding schemes and the electrochemical
coupling reaction of acrylonitrile

Adipodinitrile is an important starting material for the
technical production of ®bres. A classic technological
process leading to adipodinitrile is the electrochemical
dimerization of acrylonitrile known as hydrodimerizat-
ion. The accepted mechanism [106] of this large-scale
process is represented in Fig. 7. Acrylonitrile is electro-
lized in aqueous solution at a graphite cathode. In the
®rst step (a), an electron is transferred from the cathode
to the acrylonitrile in the presence of a water molecule.
This reduction leads to the acrylonitrile radical anion.
The radical anion, however, reacts immediately with a

proton provided by an adjacent water molecule. The
kinetically controlled step is a protonation at the nitrogen
[107]. Finally, step (a) leads to the neutral 2-cyano ethyl
radical which is thermodynamically more stable [107]. In
the second step (b), a further electron is accepted from the
cathode and the closed-shell 2-cyano ethyl carbanion is
produced. In step (c) the negatively charged carbanion
undergoes a nucleophilic substitution reaction with a neu-
tral acrylonitrile molecule. This coupling reaction pro-
duces the four-membered carbon chain. In the ®nal step
(d), a protonation occurs and the adipodinitrile is formed.

Thus, the hydrodimerization is initiated by the slow
step (a) followed by the fast step (b). We recognize that
steps (a) and (b) are in accord with the leading localized
bonding schemes for the acrylonitrile radical anion as
depicted in Fig. 6. The protonation step (a) leads ®nally to
a product where the carbon atom adjacent to the nitrile
group is protonated. The leading bonding scheme locates
the negative charge at this carbon atom (see Fig. 6). It
indicates also that step (a) localizes the unpaired electron
at the terminal carbon atom. This conclusion is in line
with the fast electron transfer step (b). Here, the second
electron is captured by the unpaired electron at the ter-
minal carbon atom. A carbanion is formed where the
negative charge is localized at the terminal carbon atom.
Only such a carbanion can enter the nucleophillic sub-
stitution reaction of step (c) leading to the four-membered
carbon chain. Thus, the accepted mechanism of the
hydrodimerization of acrylonitrile is compatible with the
theoretically obtained localized bonding schemes.

4 Conclusion

In this paper we suggested an e�ective procedure for
expanding a determinantal wave function composed of
delocalized MOs into a sequence of determinantal wave
functions made up of AOs. A characteristic feature of
the procedure is that only AO determinants appear
which have the same spin multiplicity as the MO
determinant. The AOs are localized at the atoms of the
molecule. Therefore, the expansion technique leads to an
interpretation of the MO wave function in terms of
localized bonding schemes. We applied the method to
obtain bonding schemes and their weights for the
molecules butadiene, the butadiene radical cation and
the acrylonitrile radical anion. For the doublet open-
shell molecules we expanded a UHF MO determinant.
However, we employed a UHFMO determinant also for
the singlet ground state of butadiene. Covalent and ionic
bonding schemes evolved from this wave function with
large and small weights, respectively. In contrast,
expanding an RHF MO determinant led to similar
weights for the covalent and ionic bonding schemes [60].
Thus, the overionicity, plaguing RHF expansions, seems
to be avoided by the employment of the UHF MO
determinant. In all cases the predominant bonding
schemes are consistent with chemical intuition or
experiments. The results support the notion that relevant
bonding schemes can be obtained from ab initio UHF
calculations. In spite of the great impact of the MO
method in the ®eld of computational chemistry, reso-
nance structures are still a classic theoretical device in

Fig. 7. Accepted mechanism for the anodic dimerization of acrylonit-
rile leading to adipodinitrile. Two electrons are needed in the reaction
sequence. The slow rate determining process is the formation of the
radical anion and the reaction with a water proton (step a).
Subsequently, the fast step (b) leads to a closed-shell anion starting
a nucleophilic dimerization (step c). Steps (a) and (b) are in accord
with the leading localized bonding schemes of Fig. 6
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organic chemistry. The suggested procedure may pro-
vide theoretical access to localized bonding schemes
which are closely related to resonance structures.
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Appendix

Equation (4) represents a theoretical device for expand-
ing an MO determinantal wave function into a sequence

of AO determinants. The expansion coe�cients are
determinants formed from the LCAO coe�cients trans-
forming AOs into MOs. However, an in®nite number of
LCAO coe�cient sets exists. They are all related by
unitary transformations operating on the subspace of
the occupied MOs. Unitary transformations leading
from canonical MOs /i to localized orbitals ki are well
known [6]. They leave the MO determinant invariant [5].
Here, we show that the expansion coe�cients occurring
in Eq. (4) are also left invariant.

Consider an UHF-MO determinant WUHF for n
electrons. They are situated in m� 1 a-spin orbitals ki
�i � 1; m� 1� and m b-spin orbitals k0j �j � 1; m�. We
assume that ki and k0j are localized MOs and we expand
them into a set of N atomic orbitals vl �l � 1; N�.

k1k2 . . . km�1 � v1v2 . . . vN

l11 . . . l1m�1
l21 . . . l2m�1
..
. ..

.

lN1 . . . lNm�1

0BBB@
1CCCA ; �1a�

k01k
0
2 . . . k0m � v1v2 . . . vN

l011 . . . l01m
l021 . . . l02m
..
. ..

.

l0N1 . . . l0Nm

0BBB@
1CCCA : �1b�

The LCAO coe�cients lli and l0lj transform the AOs vl
into the localized a- and b-MOs, respectively. By
interchanging rows and columns, we can bring WUHF

into half-determinant form [46]. Using Eq. (1), we write
WUHF in the form

The rectangular matrix L comprises n rows and 2N
columns. Correspondingly, matrix v consists of 2N rows
and n columns. We can apply the Binet-Cauchy theorem
[44] to expand WUHF

Any coe�cient Li is a determinant formed from a
quadratic (n,n)-matrix being a de®nite column selection
of the rectangular matrix L (see Eq. (2)). Any AO
determinant vi is a row selection of the rectangular

WUHF � Det

k1�1�k1�2� . . . k1�n�

..

.

km�1�1�km�1�2� . . . km�1�n�

k01�1�k
0
1�2� . . . k01�n�

..

. ..
.

k0m�1�k
0
m�2� . . . k0m�n�

����������������

����������������

� Det

l11 . . . lN1 0 . . . 0

..

. ..
. ..

. ..
.

l1m�1 . . . lNm�1 0 . . . 0

0 . . . 0 l011 . . . l0N1
..
. ..

. ..
. ..

.

0 . . . 0 l01m . . . l0Nm

v1�1� . . . v1�n�

..

. ..
.

vN�1� . . . vN�n�

v1�1� . . . v1�n�

..

. ..
.

vN�1� . . . vN�n�

0BBBBBBBBBB@

1CCCCCCCCCCA

����������������

����������������
: �2�

L�n; 2N� v�2N; n�

WUHF �
X

1Ok1<k2...<knO2N

Det

L1k1 L1k2 . . . L1kn

..

. ..
.

Lnk1 Lnk2 . . . Lnkn

��������
��������|�����������������{z�����������������}

Li

�Det

vk1�1� vk1�2� . . . vk1�n�

vk2�1� vk2�2� . . . vk2�n�

..

. ..
. ..

.

vkn�1� vkn�2� . . . vkn�n�

�����������

�����������|��������������������{z��������������������}
vi

:

�3�
k01k

0
2 . . . k0m�1� v1v2 . . . vN

k01k
0
2 . . . k0m � v1v2 . . . vN
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matrix v (see Eq. (2)). We can obtain localized a-MOs ki
from the UHF MOs by a unitary transformation which
linear combines the occupied canonical a-MOs /i�i � 1; m� 1�. An equivalent transformation can be
applied for the localized b-MOs k0j �j � 1;m�. These
transformations, combined with the LCAO expansions
for the canonical MOs /i and /0j, determine the LCAO
coe�cients for the localized MOs ki and k0j

Here, the rectangular matrices c and c0 contain the
canonical LCAO coe�cients for the occupied a- and
b-MOs, respectively. The transposed matrices lt and l0t
occur in the matrix L of Eq. (2). By using Eq. (4a) and
Eq. (4b), we can write for L

L(n, 2N) � lt 0
0 l0t

� �
(n, 2N)

� ut 0
0 u0t

� �
|�������{z�������}
U(n, n)

ct 0
0 c0t

� �
|�������{z�������}
C(n, 2N)

: �5�

All matrices in Eq. (5) have a characteristic block form.
The numbers of rows and columns are indicated below
the matrices. Any determinant Li, representing the
expansion coe�cient in Eq. (3), is a de®nite column
selection of the rectangular matrix L(n, 2N). Using
Eq. (5), we write for Li

Li � Det
ut 0

0 u0t

� �
�Det

c1k1 c1k2 . . . c1kn

..

. ..
. ..

.

cnk1 cnk2 . . . cnkn

0BB@
1CCA :

U(n, n) C(n, n)

�6�
Here, the quadratic matrix C(n,n) is an ordered column
selection from the rectangular matrix C(n,2N) of Eq. (5).
It contains the canonical LCAO coe�cients of the
occupied a- and b-MOs. The submatrices u and u0 in
Eq. (6) are unitary. This property and the block form in
Eq. (6) imply that the ®rst determinant at the right-hand
side of Eq. (6) is �1 and ÿ1. Hence, we can write

Li � f Det C(n, n) f � 1 or ÿ1 : �7�
Thus, unitary transformations, relating localized and

canonicalMOs, donot a�ect the expansion coe�cientsLi.
They are solely determined by the LCAO coe�cients for
the canonical MOs. Therefore, expanding an MO deter-
minant into a sequence of AO determinants is unique.
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